Convexity Preserving and Predicting by Bernstein Polynomials

Eitan Lapidot
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712, U.S.A.
Communicated by Oved Shisha
Received March 10, 1982

Abstract

It is known that the Bernstein polynomials of a function f defined on $|0,1|$ preserve its convexity properties, i.e., if $f^{(n)} \geqslant 0$ then for $m \geqslant n,\left(B_{m} f\right)^{(n)} \geqslant 0$. Moreover, if f is n-convex then $\left(B_{m} f\right)^{(n)} \geqslant 0$. While the converse is not true, we show that if f is bounded on (a, b) and if for every subinterval $|\alpha, \beta| \subset(a, b)$ the nth derivative of the m th Bernstein polynomial of f on $|\alpha, \beta|$ is nonnegative then f is n-convex.

It is known that the m th Bernstein polynomials preserve the n-convexity of $f(n \leqslant m)$. In this article we prove a weak converse theorem. We first recall the definition of n-convexity.

Definition. A function f, defined on an interval I is said to be n-convex (on I) if the determinants

$$
U\left(f ; t_{0}, t_{1}, \ldots, t_{n}\right)=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{1}\\
t_{0} & t_{1} & \cdots & t_{n} \\
t_{0}^{2} & t_{1}^{2} & \cdots & t_{n}^{2} \\
\vdots & \vdots & & \vdots \\
t_{0}^{n-1} & t_{1}^{n-1} & \cdots & t_{n}^{n-1} \\
f\left(t_{0}\right) & f\left(t_{1}\right) & \cdots & f\left(t_{n}\right)
\end{array}\right| \geqslant 0,
$$

whenever

$$
\begin{equation*}
t_{0}<t_{1}<\cdots<t_{n} \tag{2}
\end{equation*}
$$

are $n+1$ points of I.
If the points in (2) are equally spaced then the determinants (1) are denoted by

$$
U_{n}\left(t_{0}, t_{n} ; f\right)
$$

* Present address: 44a Eder St., Haifa, Israel.

Let f be defined on (a, b) and let $[\alpha, \beta] \subset(a, b)$. The m th Bernstein polynomial of f on $[\alpha, \beta]$ is defined by

$$
\begin{equation*}
B_{m}(f ;[\alpha, \beta])(t)=1 /(\beta-\alpha)^{m} \sum_{k=0}^{m}\binom{m}{k} f(\alpha+k h)(t-\alpha)^{k}(\beta-t)^{m-k}, \tag{3}
\end{equation*}
$$

where $h=(\beta-\alpha) / m$.
Theorem 1 shows that the m th Bernstein polynomials of f preserve its n convexity (for $n \leqslant m$).

Theorem 1 ([1, Theorem 6.3.3.]). Let $f \in C(|a, b|)$. If f is n-convex then $B_{m}(f ;|a, b|)^{(n)} \geqslant 0$. In particular, if $f^{(n)} \geqslant 0$ then $B_{m}(f ;|a, b|)^{(n)} \geqslant 0$.

The converse of this theorem is not true since $B_{m}(f ;[a, b])$ is determined by the values f takes at $m+1$ points. We shall, however, prove a weaker converse theorem which involves the m th Bernstein polynomials on all subintervals of (a, b).

Lemma 1. Let f be defined and bounded on (a, b) and let $\varepsilon>0$. If the determinants $U_{n}(\alpha, \beta ; f)$ are nonnegative for every interval $|\alpha, \beta| \subset(a, b)$ with $\beta-\alpha<\varepsilon$, then f is n-convex.

The proof follows similar lines to those of Theorem 1 in $|3|$.
Theorem 2. Let f be defined and bounded on (a, b) and let m and n be integers with $m \geqslant n$. Then f is n-convex iff $B_{m}(f ;|\alpha, \beta|)^{(n)} \geqslant 0$ on $|\alpha, \beta|$ (for all $|\alpha, \beta| \subset(a, b))$.

Proof. The only if part is Theorem 1. To prove the if part, notice that

$$
\begin{equation*}
B_{m}(f ;|\alpha, \beta|)(t)=\sum_{k=0}^{m}\left(\Delta^{(k)} f\right)(\alpha)\binom{m}{k}\left(\frac{t-\alpha}{\beta-\alpha}\right)^{k} . \tag{4}
\end{equation*}
$$

See [1, p. 108], where

$$
\begin{equation*}
\left(\Delta^{k} f\right)(\alpha)=h^{k} k!U_{k}(\alpha, k(\beta-\alpha) / m ; f) / U_{k}\left(\alpha, k(\beta-\alpha) / m ; u_{k}\right), \tag{5}
\end{equation*}
$$

and where $u_{k}(t)=t^{k}$.
Since $B_{m}(f ;[\alpha, \beta])^{(n)}(\alpha) \geqslant 0$, it follows from (4) and (5) that $U_{n}(\alpha, n(\beta-\alpha) / m ; f) \geqslant 0$. If we consider intervals $[\alpha, \beta]$ with $\beta-\alpha<\varepsilon$ for some $0<\varepsilon<b-a$, then by Lemma $1, f$ is n-convex on $(a, b-\varepsilon)$, and since we can choose ε arbitrarily small, f is n-convex on (a, b).

Remark. If, in addition, f is defined on $[a, b]$ and if it is continuous at a and b then f is n-convex on $\lfloor a, b\rceil$. (The proof is similar to that of $[2$, Lemma 2 |.)

Corollary. If for every $[\alpha, \beta] \subset(a, b), B_{m}(f ;[\alpha, \beta])^{(n)}(\alpha) \geqslant 0$ then f is n-convex and hence $B_{m}(f ;[\alpha, \beta])^{(n)} \geqslant 0$ on $[\alpha, \beta]$.

References

1. P. J. Davis, "Interpolation and Approximation," Ginn (Blaisdell), Boston/New York, 1963.
2. E. Lapidot, On complete Tchebycheff-systems, J. Approx. Theory 23 (1978), 324-331.
3. E. Lapidot, On generalized mid-point convexity, Rocky Mountain J. Math. 11 (1981), 571-575.
