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It is known that the Bernstein polynomials of a function f defined on 10, II
preserve its convexity properties, i.e., if fin) ;;:. 0 then for m;;:' n, (B mf)(nl ;;:. O.
Moreover, if f is n-convex then (Bmf)ln);;:. O. While the converse is not true, we
show that if f is bounded on (a, b) and if for every subinterval Ia, Pic (a, b) the
nth derivative of the mth Bernstein polynomial off on la, P] is nonnegative then f
is n-convex.

It is known that the mth Bernstein polynomials preserve the n-convexity of
I (n <; m). In this article we prove a weak converse theorem. We first recall
the definition of n-convexity.

DEFINITION. A function f, defined on an interval f is said to be n-convex
(on f) if the determinants

to t 1 tn

U(f; to, t l , ... , tn) =
t 2 t 2 t 2
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whenever

(2)

are n + 1 points of f.
If the points in (2) are equally spaced then the determinants (1) are

denoted by
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Let I be defined on (a, b) and let [a,,8] c (a, b). The mth Bernstein
polynomial ofIon [a,,8] is defined by

where h = (,8 - a)/m.

Theorem 1 shows that the mth Bernstein polynomials of I preserve its n­
convexity (for n ~ m).

THEOREM 1 ([ 1, Theorem 6.3.3.]). Let IE qla, b]). II I is n-convex
then Bm(f; [a, b1)(n) >0. In particular, ifI(n) >°then Bm(f; [a, b] )(n) >0.

The converse of this theorem is not true since B m(f; Ia, b]) is determined
by the values I takes at m + 1 points. We shall, however, prove a weaker
converse theorem which involves the mth Bernstein polynomials on all subin­
tervals of (a, b).

LEMMA 1. Let I be defined and bounded on (a, b) and let e > 0. II the
determinants Un(a, ,8;f) are nonnegative lor every interval [a,,8[ c (a, b)
with ,8 - a < e, then I is n-convex.

The proof follows similar lines to those of Theorem 1 in 13[.

THEOREM 2. Let I be defined and bounded on (a, b) and let m and n be
integers with m >n. Then I is n-convex iff Bm(f; Ia, ,8)) (n) >°on [a,,8] (for
all [a,,8] c (a, b)).

Proof The only if part is Theorem 1. To prove the if part, notice that

Bm(f;la,,8])(t)= k~'O (L1(k1)(a)(:) (~=:(. (4)

See [1, p. 108], where

(L1'l)(a) = hkk! Uk(a, k(,8 - a)/m;f)/Uk(a, k(,8 - a)/m; Uk)' (5)

and where uk(t) = tk.
Since Bm(f;[a,,8])(n)(a»O, it follows from (4) and (5) that

Un(a, n(,8 - a)/m;f) >0. If we consider intervals [a,.8] with .8 - a < e for
some °< e < b - a, then by Lemma 1, I is n-convex on (a, b - e), and since
we can choose e arbitrarily small, I is n-convex on (a, b).

Remark. If, in addition, I is defined on [a, b] and if it is continuous at a
and b then f is n-convex on [a, b]. (The proof is similar to that of [2,
Lemma 21.)
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COROLLARY. Iffor every [a,Pl c (a, b), BmU; [a,p])(n) (a);:;' 0 thenfis
n-convex and hence BmU; [a, p])(n) ;:;, 0 on [a, Pl.
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